
VISRAL L.P.

Python Solutions and Windows Publishing Studio

Visral® 3.0 User Manual

Volume 2

18 April 5, 2016

www.visral.com

P.O. Box 646

Rockwall, Texas 75087

Preliminary

 2005 - 2016 Visral L.P. All rights reserved

VISRAL is a registered trademark of Visral L.P.

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
U

til
iti

es

an

d
To

ol
s

2

Document Revisions

Date Version
Number Document Changes

05/02/2014 0.1 Initial Draft

03/05/2015 0.2 Beta release

04/18/2016 0.30 Includes multiport diagram information 3.0.2.7

Notes:

1. This guide may describe some features that have not been enabled.
2. The representative images may in some cases appear slightly different from those of

application itself.
3. References to right click or left click means respectively, pushing right mouse button

or pushing left mouse button.

Icons and images by Aha-Soft, Yusuke Kamiyamane, LED24.DE, PC.DE, and Fatcow
Other images are the property of Visral L.P. or in the Public Domain.

http://www.aha-soft.com/�
http://p.yusukekamiyamane.com/�
http://led24.de/iconset/�
http://pc.de/icons/�
http://www.fatcow.com/free-icons�

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
U

til
iti

es

an

d
To

ol
s

3

Contents
UTILITIES AND TOOLS .. 4

MIMICKER .. 4

DEPENDENCY TREES .. 6

MAPS .. 7

RSA AND SYMMETRIC ENCRYPTION FOR DOCUMENT PASSAGES .. 8

VISRAL DIAGRAMS ... 10

Selecting Elements .. 10

PETRI NET DIAGRAMS ... 11

MARKOV CHAIN DIAGRAMS ... 12

PATH MODEL DIAGRAMS ... 12

BUSINESS MODEL DIAGRAMS ... 13

PRODUCTION MODEL DIAGRAMS .. 14

CIRCUIT ANALYSIS .. 15

STAT101 .. 16

SYNTAX/GRAMMAR PARSING ... 17

Beyond .. 18

Other Syntax/Grammar Operators ... 19

Compiling Grammar Automaton .. 23

Understanding the Emulation Trace ... 24

Generate EBNF Production Rules .. 29

Detect Recursion ... 31

Remove Direct Recursion .. 32

Combine Terms ... 34

Automated Indirect Left Recursive Removal ... 34

MARKUP - XML/HTML/… CREATION, EDITING, AND INSPECTION ... 35

AUTOMATONS ... 37

APPENDIX .. 38

Accepted EBNF Forms ... 38

Panel construction assistance ... 43

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
U

til
iti

es

an

d
To

ol
s

4

Utilities and Tools
Covers:

 Mimicker
 Dependency Trees
 Maps
 Passage Encryption

Mimicker
The mimicker, which operates concurrently tracking just user's computational instructions,
allows rerunning previous activity. Its contents, may be saved to and reloaded from XML
files, as well as extracted from Reports (RTF files) that have embedded Panels and Code.

 The clapper icon in the Morphing menu enables and disables the tracking. This icon is
visible when either the Panel or Mimic has focus.

The Mimic can be started from any Operator element by right clicking on the element and
the left clicking on the Run Mimic entry.

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
U

til
iti

es

an

d
To

ol
s

5

Element Level Description

1 This element can be added to establish a separate listing of

executed Operators.

Elements list in the Mimic can be edited before they are executed.

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
U

til
iti

es

an

d
To

ol
s

6

Dependency Trees
The computational muscle of Python melded with spreadsheets means a single cell worth of
code can populate an entire worksheet. The downside of this power is the ease with which
circular references can unintentionally arise. To alleviate this potential problem Visral can
analyzes all the functional and parameter relationships and create dependency tree graphics
to simplify and correct the condition.

Element Description

This is the source element of a dependency. All the elements to the right
represent other modules, routines, or functions that use it.

This is an example of a module, routine, or function that is used by the source
element. All the elements to the right represent other modules, routines, or
functions that use this one. The ones to the left are the ones that use it.

This is represents a module, routine, or function that could not be located.
Therefore there will not be any to the right of it.

Initially only the first level of dependency is shown. A right click on the source module
element (rule head) will display a menu with an entry Module Dependency/Coupling.
Selecting this entry will cause all of the remaining levels of coupling to be filled out.

Visral’s Generate Dependency Diagram
command analyzes all the functional and
parameter relationships and then creates a
dependency tree diagram to highlight
potential cyclic issues. (This process is used
by the spreadsheet calculate routine to
determine order of execution and report
detected conflicts if any.)

Initially only the first level of
dependency is shown. A right click on
the source module element (rule head)
will display a menu with an entry
Expand. Selecting this entry will cause
the next levels of coupling to be filled
out.

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
U

til
iti

es

an

d
To

ol
s

7

Maps

 Allows combining files from multiple local and remote directories into virtual directories.

 Provides specifying means for data retrieval, caching, and mapping from big memory
sources (Big Data).

 Provides specifying means for remote concurrent processing services.
 Offers filtered hierarchical view of folders and files.

Element Level Description

1

2

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
U

til
iti

es

an

d
To

ol
s

8

RSA and Symmetric Encryption for Document Passages
Both private-public and symmetrical encryption facilities are available to secure passages
and code components. The Producer refer to is the one who creates encrypt content,
Recipient to those receiving that encrypted content, and Personal refers to encrypted
content received from others.

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
U

til
iti

es

an

d
To

ol
s

9

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

10

Visral Diagrams
Covers diagrams:

Selecting Elements
The content of each diagram is assessed when
loaded, setting its type and selecting the appropriate
element list and available operations. (The selection is
determined by the first rule head encountered.)

Right clicking on the background will bring up the
element selection menu. This allows different element
groups and their associated operations to be applied
to any diagram.

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

11

Petri Net Diagrams

Element Description

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

12

Markov Chain Diagrams

Element Description

Path Model Diagrams

Element Description

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

13

Business Model Diagrams

Element Description

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

14

Production Model Diagrams

Element Description

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

15

Circuit Analysis

Element Description

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

16

Stat101

Element Description

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

17

Syntax/Grammar Parsing

Element Description

This element is the non-terminal name that identifies the rule. No two
rules may have the same. Must be left most elements.

NonTerm is a reference to a non-terminal rule. If the reference is to
an existing rule, either user created or built-in, the displayed icon will
be , otherwise it will be indicating a container. If the rule is later
added, the icon of all referencing non-terminals will then change to
.

Terminal; the value within means nothing but itself. Used for compare
testing such as parsing signatures. This element must contain an
argument. Atomic elements (terminal) can accept printable ASCII
characters or hexadecimal values, permitting both printable
characters and binary values. In atomic elements, the “space” is
indicated by a centrally located small blue dot.

When creating EBNF production rules, number values are displayed
without quotes. The same is true in the other direction; number
values outside of quotes are displayed with the H superscript.

This acceptor recognizes ASCII alphanumeric characters plus
underscore. It will accept a single character (byte).

This acceptor recognizes ASCII alphanumeric characters. It will accept
a single character (byte).

This acceptor recognizes ASCII letters, both lower and upper case. It
will accept a single character (byte).

This acceptor recognizes and accepts lower case ASCII letters. It will
accept a single character (byte).

This acceptor recognizes and accepts upper case ASCII letters. It will
accept a single character (byte).

This acceptor recognizes the ASCII digits 0 through 9. It will accept a
single character (byte).

This acceptor recognizes the ASCII digits 0 through 9 and letters A
through F (upper and lower case). It will accept a single character
(byte).

This acceptor recognizes and accepts any ASCII character. Careful
because any means any including ‘0’ (zero), the normal string
terminator.

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

18

Beyond

If this element is places in a column of optional terminal values their
icons will change to a magnifying glass and they will scan the
input signature for a match. If the ScanBytes word is blank the scan
will be to the end of the signature; if it is a number the scan will be
for that number of bytes.

Skip the specified number of signature bytes.

Must be left most elements.

This can be used anywhere to keep notes. It has no effect on the
behavior of a rule’s execution but is merely to provide information to
the viewer of the rule. The element is passive, having no effect on
function except as a pass-thru.

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

19

Other Syntax/Grammar Operators

Built-in Acts
Like

Form/Use

_ws Rule If there is a whitespace rule defined with this name then
whitespaces will be not be removed from the input signature.
Otherwise they will be removed before sentence is parsed. The
pre-parser whitespace is defined as (0x20 | 0x0D | 0x09), but
may be alter in the source code. (Does not require a rule body
to cause the action.)

.letter Atom This acceptor recognizes ASCII letters, both lower and upper
case. It will accept a single character (byte).

.locase Atom This acceptor recognizes and accepts lower case ASCII letters.
It will accept a single character (byte).

.upcase Atom This acceptor recognizes and accepts upper case ASCII letters.
It will accept a single character (byte).

.chr imm Atom Must be followed by a number (imm). It will test a single byte
represented by that number against the current byte of the
signature. If the match is successful the byte of the signature
will be consumed. The number can be integer or hexadecimal
(0x…).

.arc imm Atom Must be followed by a number (imm). It will test a single byte
represented by that number against the current byte of the
signature. Unlike ".chr", this function does not consume
anything from the signature. The number can be integer or
hexadecimal (0x…).

.digit Atom This acceptor recognizes the ASCII digits 0 through 9. It will
accept a single character (byte).

.hex Atom This acceptor recognizes the ASCII digits 0 through 9 and
letters A through F (upper and lower case). It will accept a
single character (byte).

.any [imm] Atom
Rule

This acceptor recognizes and accepts any ASCII character.
Careful because any means any including ‘0’ (zero), the normal
string terminator. If there is an immediate value (imm) it will
then act as ".sup" and suspend the Parser/State Machine for
external processing and then continue where it left off. The
value can be either decimal or hexadecimal (0x…).

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

20

.act imm Rule This name in a reference element is indented to cause the
activation of an external function. Must be followed by a number
to indicate which external function is being called.

The exception is “.act 0” which will terminate the parsing
process and is useful when the input signature might be longer
than defined by the grammar but is still okay. Place it at the end
of the starting rule.

This rule consumes nothing and is used to implement state, flow
and Petri functions; as well as the requirements of a strict
grammar. Causes a return to the same state it left from, which
means it will re-exit if conditions at the state have not changed.

.sup imm Rule Similar to .act except does not return to the same state and is
indented to suspend the Parser/State Machine for external
processing and then continue where it left off. ".sup 0" behaves
the same as ".act 0".

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

21

Rule Operations

Right click when the cursor is on rule head will produce
a menu with the following operations. Notice that all
the elements of the selected rule are lit indicating that
the operation could affect any or all of them.

Operation Description

Compile Rule
Set

Build a parser image for the rule set whose root is this rule. Algorithms compute
the states required to implement the grammar, which are then added to the
diagram. A $ will appear on elements that have the possibility of generating an
output term in intermediate postfix results. If the element has a name, that be
used as a default value. Otherwise, a unique one should be entered into the
formula if it is to be recognized by the parser.

Export to
EBNF

This operation will convert all the selected rule to EBNF production rules and
display it in the Trace window.

Remove
Direct

Recursion

This operation removes left recursive terms that are found in the selected rules.
After this operation, running a reduce operation may provide a cleaner looking
presentation. (RecursiveRules.xml has a collection of recursive rules for practice)

Group w/o
Precedence

This operation combines terms where possible and reformats the rule to have a
left to right, top down form.

Group with
Precedence

Same as above but does not make any changes that would disrupt the process
order of terms.

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

22

 Test Rule Operations

Right click when the cursor is on rule head will
produce a menu with the following operations. Notice
that all the elements of the selected rule are lit
indicating that the operation could affect any or all of
them.

Operation Description

Run
Emulation

Once a parser rule set has been built, test rules can be run and traced to
determine if the grammar is performing as expected. Selecting the entry will
cause that to happen.

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

23

Compiling Grammar Automaton
A grammar could be created from scratch but to speed the understanding of the whole
process it is best to start with a known quantity. Use the button to locate and load the
Excel.xml grammar file.

Right click when the cursor is on rule head of the root rule of the grammar. Moving the
cursor down over the Rule Operations bar will cause the drop-down to appear.

Continuing down until over the Compile Rule Set and left clicking will cause the parser
image to be constructed. The diagram will also change to show all of the assigned states
and the scroll window will list the results of the build.

Some elements will show a $ (dollar sign), which indicates that this element has the
possibility of generating an output term in postfix results. If the element has a name, that
be used as a default value. Otherwise, a unique one should be entered into the formula if it
is to be recognized by the parser. This can be done by clicking on the Formula entry on the
context menu when in edit mode.

The printout in the scroll window
resulting from the build lists some of the
various checks the compiler performs.

The report shows testing for direct and
indirect recursion indicates none were
found. (This check looks throughout the
entire diagram not just the rules that are
part of the grammar.)

It is determined if all the required rules
are present and prints a list; then
checks them for illegal configurations.

Indicated next are those rules that are
equivalent to terminal values.

The build takes place here followed by
checking the resulting instruction format
and a count of the number indirects
required. (pointers to fixed values)

Then redundant sequences are removed
showing the effective size reduction.

And finally the results, which show 81
states and 1045 sequences, were
needed to construct a parser that
matched the grammar.

There are 8 test rules provided with excel.xml. Some may look a little strange and will fail
but were designed to stress certain functions of the parser compiler itself and not the actual
grammar.

Note: The test rule is composed of one non-terminal with the name of the root rule of the
grammar to be tested and what is termed a payload. The content inside the payload’s outer
most parentheses is fed to the parser when emulation is run.

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

24

Understanding the Emulation Trace
Move the cursor up until it is on rule Test5 and right click. Again slide the cursor down but
this time stop at RUN Emulation and left click. The scroll window will have the resulting
trace as shown below.

The columns of the listing to the right of the character being processed represent the state
stack.

The blue highlighted lines have two components and represent terminal values. The first
part is the name of the rule representing the type and the second part is the actual value.
When processing the results from the parser these values are push onto the stack.

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

25

The green lines represent what was originally infix operators (binary) now postfix. That
means the last two items on the stack should be popped of, processed with this operator
and the result pushed back on.

The red lines with a closing-bracket)function)sum represent function operators which can
have any number of arguments. These are also converted to postfix meaning the operator
pulls the required number of values from the stack, processes them with the result being
push back on.

The other red lines with opening-bracket(function (sum in most cases can be ignored but is
there for when dealing with an operator that has a variable number of arguments. This is
the case when parsing LISP. It permits popping values of the stack until the matching lead
operator is encountered.

The line that is headed with icode: represents the instruction stream that is provided to the
hosting system for processing the results of parsing.

icode: +ident/0/4(sum+number/b/e(sqrt+number/15/16)sqrt(pi)pi+number/1f/23)sum
+number/27/2d*add*assign

The rules for interpreting this string are as follows:

1. A term preceded by a plus (+) indicates a terminal value and should be pushed on
the stack or the results of it being processed pushed on the stack. It is always
composed of three parts separated by forward slashes. The first part is type, the
second is a hex value offset into the input signature where the raw value is located,
and the third is the ending offset.

2. Terms preceded by an asterisk (*) indicates a binary operator requiring two values
be popped off the stack and one returned.

3. As described above the closing-bracket)function tells the operator to pull the
required number of values from the stack or until the matching opening-
bracket(function term is encountered and process them with the result being push
back on.

Prefix and infix syntax structures are converted to postfix during the parser build. In
processing the postfix results (operator follows the arguments) the expression is traverses
from left to right using the following procedure:

If value encountered, push it onto the stack

If n-ary operator, pop the right number of arguments, apply the operator, and push the
result.

At the end of the expression, the result is the only value left on the stack

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

26

Atomic/Terminal Operations

A right click when the cursor is on terminal element will
produce a menu with the following operations. Atom is
a terminal symbol; the value within means nothing but
itself. Used for compare testing such as parsing
signatures. This element must contain an argument.

Atomic elements (terminal values) can accept printable
ASCII characters or hexadecimal values, permitting
both printable and non-printable (control) characters.
In atomic elements, the “space” is indicated by a
centrally located small blue dot.

An atomic ASCII element can be made Case Insensitive
by placing the cursor on it, pressing the right button of
the mouse, and then selecting the Toggle Case
Sensitive entry. Repeating this action will toggle it back
to case sensitive. When the atom is insensitive to case,
a capital “I” will be displayed in the lower right corner
of the element.

Operation Description

Toggle Not Causes a bar to be placed over the element contents. This condition will allow
passing if the signature does not match the element contents. However, if the
signature matches it will be consumed; if not, nothing is consumed.

Note: Currently this is only functional for a single character identity.

Toggle Hex
Format

Atomic elements can accept a values represented by a hexadecimal number.
Pressing the right button of the mouse, and then selecting the Toggle Hex
Format entry will cause the entered hex value to represent the terminal value
and display a capital X or H superscript in the upper right corner.

These two atoms do not represent the same value. The second of the two is
looking for a literal match with all six characters, “0x2345”. The first is looking for
a match to the value composed of two 8-bit characters; the first with the hex
value “0x45” and the second with the hex value “023”. (The “0x” is optional.)

Toggle Case
Sensitive

An atomic ASCII element can be made Case Insensitive by placing the cursor on
it, pressing the right button of the mouse, and then selecting the Toggle Case
Sensitive entry. Repeating this action will toggle it back to case sensitive. When
the atom is insensitive to case, a capital “I” will be displayed in the upper right
corner of the element.

The atom with the I superscript will consume (match) any combination of upper
and lower case character of the word “rand” for example “rANd”, whereas, the
other only matches a precise copy.

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

27

When generating EBNF production rules, number values are displayed without quotes. The
same is true in the other direction; number values outside of quotes are displayed with the
H subscript.

Element Superscripts & Subscripts

Superscripts Element Flag Description

$ Only present following a parser build (Compile Rule). Indicates that this
element has the possibility of generating an output term in the postfix results.
If the element has a name, it is used as a default value. Otherwise, a unique
one should be entered into the formula if it is to be recognized by the parser.
(If two such elements have the same name, one should be changed.)

H In the case of an Atom/Terminal element indicates the hexadecimal value
should represent the contents and not the lateral.

I In the case of an Atom/Terminal element the contents should be interpreted as
case insensitive. Refer to Visral Diagram Elements for details.

R Indicates the term/element is part of a direct or indirect recursion.

M Indicates more than one rule has the same name

Subscripts Description

Value Function name or Formula description.

Repeat and Else (aka: Loop and Optional)

Else: (or Optional) The arrow pointing right defines the
path to take if all else fails. It makes other elements in
parallel with it, optional (in Visral diagram sense). It
does not consume anything; it merely expresses a legal
direction to view other possibilities. Unlike an atom such
as .letter, it does not consume (accept) a
character/byte.

Repeat: The arrow pointing to the left is the means by
which recursion is implemented. (The only element that
enters from the right and exits to the left.) Like the
.else, it does not consume anything; it merely expresses
a legal direction to view other possibilities. Used for
defining loopback, the .repeat’s priority can be set with
the “Toggle Priority” entry in its options menu.

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

28

It will toggle back and forth between high and low. Priority is generally not an issue, but as
in the example below, the “A” path would never be taken.

Unless the priority of .repeat was changes to low as indicated by the “L” subscript instead
of the “H”.

Neither “H” nor “L” is displayed for loops that represent “zero or more” repetitions.

Precedence

Unlike Visral diagrams, Visral elements have precedence in the case of optional paths, with
the top-most having the highest priority. This makes it very convenient for creating rules by
using exceptions as illustrated below.

In EBNF this would be: Rule ::= “G” {<all characters except H>}* “H” shown below ;
which can be difficult to implement.

Precedence cannot be represented in EBNF and therefore should be saved in Visral XML
format to avoid losing the descriptive information.

This also means that with options the semantic may
need to be taken into account, such as those to the right
where one is the complete leading subset of another, the
longer should be above the shorter.

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

29

Generate EBNF Production Rules
This operation will generate an EBNF production
rules from a diagram rule and display it in the Trace
window. To save, the “Save as EBNF” button on the
“File” sub-menu will permit that to be
accomplished.

Selecting the “List as EBNF” button while the cursor is on the head of the following diagram
rule:

Will show the following in the Trace window:

S ::= ("c" A | (S "e" | "g") "d" | "f") { "d" "d" }* | ("c" A | (S "e" | "g") "d"

 | "f") { "d" "d" }* "d" | S ("e" | "c") | "g" | "d" S ;

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

30

Some changes can be made to the EBNF output form through Properties Page:

Function Default Notes

Assignment ::= No more than 7 characters.

Concatenation space Not settable in current release.

Termination ; No more than 7 characters.

EBNF Conversion Constraints

Else’s (.else) should be in the lowest priority position of any list of optional paths.

Repeat’s (.repeat) should be in the highest priority position (topmost) of any list of options. (This is
not to be confused with the Ufeedback priorityU of a .repeat which is toggled by the “Toggle Priority”
entry of it options menu.

No dangling elements (rules that are to be converted to EBNF must have a single
termination point)

If these conditions are not satisfied, the results may or may not be correct. If the
conversion processor is able to detect a rule it can not convert, it will display in the scroll
window “UNABLE TO CONVERT”. A correction routine tries to place all .else’s in the lowest
priority position, but if unable to do so, it may be the reason the conversion could not be
performed. If that is the case, the repositioning of .else’s will need to be done by hand.

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

31

Detect Recursion
This operation will list those rules that are recursive, whether direct or indirect. This
operation examines all rules of the current diagram.

Note: If a large number of indirect recursive rules are detected, it may be more efficient to
modify the rule set to eliminate them than to use substitution and direct recursive removal.
The number of elements could grow to an unmanageable size otherwise. As an example, the
ATIS grammar rule set with over hundred rules and 16,000 elements produces eleven
indirect left recursive rules. As can be seen below the dependences are large. Running the
automatic Indirect Left Recursive Removal would result in excessively large rules.

The above listing below indicates substitutions that can be made to reduce dependencies.

 ..Testing for Direct and Indirect Recursion
 Rule with Recursion [NP_NN]
 Rule with Recursion [NP_NP]
 Rule with Recursion [AVP_QL]
 Rule with Recursion [AVP_RB]
 Rule with Recursion [NP_NNS]
 Substitution Sequence for Indirect
 Substituting [NP_NP] into [NP_NN] reduces dependencies from 77 to 76
 Indirect: [NP_NP] contains [NP_NN]
 Substituting [AVP_QL] into [NP_NN] reduces dependencies from 77 to 76
 Indirect: [AVP_QL] contains [NP_NN]
 Substituting [AVP_RB] into [NP_NN] reduces dependencies from 77 to 76
 Indirect: [AVP_RB] contains [NP_NN]
 Substituting [NP_NNS] into [NP_NN] reduces dependencies from 77 to 76
 Indirect: [NP_NNS] contains [NP_NN]
 Substituting [NP_NN] into [NP_NP] reduces dependencies from 15 to 14
 Indirect: [NP_NN] contains [NP_NP]
 Substituting [AVP_RB] into [NP_NP] reduces dependencies from 15 to 14
 Indirect: [AVP_RB] contains [NP_NP]
 Substituting [NP_NNS] into [NP_NP] reduces dependencies from 15 to 14
 Substituting [NP_NN] into [AVP_QL] reduces dependencies from 2 to 1
 Substituting [AVP_RB] into [AVP_QL] reduces dependencies from 2 to 1
 Substituting [NP_NNS] into [AVP_QL] reduces dependencies from 2 to 1
 Substituting [NP_NN] into [AVP_RB] reduces dependencies from 5 to 4
 Substituting [NP_NP] into [AVP_RB] reduces dependencies from 5 to 4
 Substituting [AVP_QL] into [AVP_RB] reduces dependencies from 5 to 4
 Indirect: [AVP_QL] contains [AVP_RB]
 Substituting [NP_NNS] into [AVP_RB] reduces dependencies from 5 to 4
 Substituting [NP_NN] into [NP_NNS] reduces dependencies from 92 to 91
 Indirect: [NP_NN] contains [NP_NNS]
 Substituting [NP_NP] into [NP_NNS] reduces dependencies from 92 to 91
 Indirect: [NP_NP] contains [NP_NNS]
 Substituting [AVP_QL] into [NP_NNS] reduces dependencies from 92 to 91
 Indirect: [AVP_QL] contains [NP_NNS]
 Substituting [AVP_RB] into [NP_NNS] reduces dependencies from 92 to 91
 Indirect: [AVP_RB] contains [NP_NNS]

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

32

Remove Direct Recursion
This operation removes left recursive terms that are found in the selected rule. After this
operation, running Combine Elements may provide a cleaner looking presentation. The
following is an example of left recursion removal.

Figure 1

Figure 2

Figure 3

Right clicking on a rule heads will bring up the menu of possible operations. Left clicking
Remove Direct Recursion will lead to the rewriting of rule with recursion removed.

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

33

Figure 4

Figure 5

In the above example the B3 recursive term is first removed with Remove Direct
Recursion and then terms are combined with Group w/o Precedence to clean up the
results.

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

34

Combine Terms
The following illustrates some of the reduction and re-formatting performed by the Group
w/o Precedence command.

Figure 6 Before Group w/o Precedence

Figure 7 After Group w/o Precedence

Automated Indirect Left Recursive Removal
Visral uses the method of steepest gradient
decent to implement an automated substitution
and direct left recursive removal strategy.

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

35

Markup - XML/HTML/… Creation, Editing, and Inspection

Element Description

Element stands for an XML element.

Data holds text that goes/found between elements.

Holds data/text that can contain XML markup characters. Only the
sequence “]]>” (0x5d 0x5d 0x3e) needs to be avoided.
<![CDATA[…CDATA…]]>

Instruction holds text for an instruction element; i.e. <?Instruction>

<!Documentation>

Comment holds text for a comment element; i.e. <!--Comment-->

This can be used anywhere to keep notes. It has no effect on the
behavior of a rule’s execution but is merely to provide information to the
viewer of the rule. The element is passive, having no effect on function
except as a pass-thru.

HTML files are converted to XHTML when they are displayed.

XML special characters & < > “ ‘ will show as themselves and can be used directly in Visral
elements. They automatically get converted to and from & < > " '
when files are either inputted, outputted or appear in the raw window.

A right click on an element will bring up the options menu with two special entries, Generate
XPATH Sequence and Generate XPATH Seq with id/class.

If an entry is selected the Clipboard will receive the XPATH description of where the element
is located, and a copy will be printed in the Trace.

The editor tries to correct errors such as missing closing tags, out of order tags, missing
quotes, and wrong case when converting HTML to XHTML. It also understands HTML specific
characteristics, for example the fact that the ampersand (&) and angle brackets (<>) are
treated differently depending on whether they are inside or outside of a <script> element.

Note: Visral is not an XHTML checker. Nor is it a pure XML editor because of its need to
support graphs as well as trees, and its need to recognize a much larger class of element
types than those of XML. However, it does understand such cases as the ampersand (&) and
angle brackets (<>) are treated differently depending on whether they are inside or outside
of a <script>.

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
V
is

ra
l D

ia
gr

am
s

36

Figure 8

A right click on an element will bring up the menu with entries: View Source Code, Generate
XPATH Sequence, and Generate XPATH Seq with id/class.

Selecting the View Source Code entry in menu from the right click on the highlighted
element above displays the raw XML structure in the trace similar to the following. The raw
image is recomposed to discard all preceding siblings and just show parents.

If an entry is selected the Clipboard will receive the XPATH description of where the element
is located, and a copy will be printed in the Trace. The following shows the result of
selecting one, then the other of the example above.

Selecting the Generate XPATH Sequence will send the following to both the Trace and the
clipboard.

• XPATH: /html/body/div/div/div/div/div/ul/li/a

Selecting the Generate XPATH Seq with id/class will send the following to both the Trace
and the clipboard.

• XPATH: /html/body/div class="container"/div class="main"/div class="row-
fluid"/div class="spc-rightsidebar span3"/div
class="sphinxsidebarwrapper"/ul/li/a

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
A
ut

om
at

on
s

37

Automatons
Covers:

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
A
pp

en
di

x

38

Appendix
Covers:

 Accepted EBNF Forms

Accepted EBNF Forms

 EBNF ISO EBNF ABNF XBNF XML EBNF

Assignment Name::=E…
Name=E…
Name:SpaceE
…
Name->E…

Name=E… Name=E… Name::=E… Name::=E…

Terminal “…”
‘…’
%bB…
%dD…
%hH…
%xH…
D…
0xH…

“…”
‘…’

“…”
%bB…
%dD…
%hH…

“…”

“…”
‘…’

Non-terminal W…
<…>

W…

W…
<…>

W…
<…>

W…

Concatenation
(And Then)

Space
,3
W…-W…

, Space Space &
W…-W…

Disjunctive

|
/

| / | |

Conjunctive
(And Also)

& &

Negation
(But Not)

Space-W…
Space-(E…)

 ~

Optional [E…]
W…?
(E…)?

[E…] [E…]
*1…

O(E…) W…?
(E…)?

Repeat
(zero or more)

{E…}*
{E…}
W…*

{E…} *W…
*(E…)

#(E…) W…*
(E…)*

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
A
pp

en
di

x

39

Repeat
(one or more)

{E…}+
{E…}-
 W…+

{E…}- 1*W…
1*(E…)

N(E…) W…+
(E…)+

Grouping (E…) (E…) (E…) (E…) (E…)

Rule
termination

;
.
LF

; LF . LF

Range5
Selection5

[E…- E…]*
[E… E… E…]+

 [^A-B]
[ABC]

Comment2 (*…*)
/*…*/
;…EOL
…EOL
%%...EOL

(*…*) ;… <EOL> /*…*/

Special
Expressions

?...?
~…

?...?
n*…

n*n
n*m

 [WFC: E…]
[VC: E…]

Legend: E… = Expression, W… = Word, D… = Decimal, H… = Hexadecimal, B… = Binary, … =
Literal, Space = One or more whitespaces.

Notes on EBNF Forms:

1. The column titled EBNF indicates the expressions that are recognized by the editor. The first
entry in each group represents the default EBNF output form.

2. Comment fields will show up as inline green text, including if placed within the rule, excluding
…EOL, which is not passed through. (Their presents within rules have no effect on any of the
operations.)

3. Any undefined character can be used as a concatenation token. Terminal values may not even
require concatenation symbol, as long as there is a unique character to differentiate adjacent
non-terminal values.

4. Care should be used when terminal values contain quotes within quotes to make the outside
quotes different than the inside ones; i.e. double and single. However, ‘’’ and “”” are
recognized properly.

5. Not available in this version.

 EBNF Comments

Non-terminals
may begin
with

Any letter
Including <

If non-terminal starts with < it must end with >
and the second character must be a letter.
The <> will subsequently be stripped from the
expression when generating the Visral diagram.

Non-terminals
may contain

Any letter
Any number
Including _ and spaces if
inside <…>. May contain
spaces if concatenation uses
comma.

For Non-EBNF Uses:
May contain any character except for > if inside
<…>. May not contain “:” followed by a space
or end in “.”

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
A
pp

en
di

x

40

Non-terminals
may end with

Any letter
Any number
Including _ >

Terminal “…” May contain any character except double
quote.

Terminal ‘…’ May contain any character except single quote.

Terminal May start with a number or
percent symbol.

Specifically: %bB… %dD… %hH… %xH… D…
0xH…
See legend above.

Concatenation , If a comma is detected within a rule but outside
a terminal or comment field, the entire file is
assumed to use commas for concatenation.

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
A
pp

en
di

x

41

ASCII Control Characters

Hex Definition

00 NUL (Null)

01 SOH (Start of Heading)

02 STX (Start Text)

03 ETX (End Text)

04 EOT (End Transmission)

05 ENQ (Enquiry)

06 ACK (Acknowledge)

07 BEL (Bell)

08 BS (Backspace)

09 TAB HT (Horizontal Tab)

0A LF (Linefeed, Newline)

0B VT (Vertical Tab)

0C FF (Form Feed)

0D CR (Carriage Return)

0E SO (Shift Out)

0F SI (Shift In)

10 DLE (Data Link Escape)

11 DC1 (X-ON)

12 DC2

13 DC3 (X-OFF)

14 DC4

15 NAK (Negative Acknowledge)

16 SYN (Synchronous Idle)

17 ETB (End Transmission Blocks)

18 CAN (Cancel)

19 EM (End of Medium)

1A SUB (Substitute)

1B ESC (Escape)

1C FS (File Separator)

1D GS (Group Separator)

1E RS (Record Separator)

1F US (Unit Separator)

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
A
pp

en
di

x

42

Errors and Warnings

 !WARNING: Auto-router timed out on Rule: []

 !Warning: Dangling element [] in rule []

 !Warning: Unable to remove direct recursive from rule []

 !WARNING: Low memory

 !WARNING: Low on Blocks

 !WARNING: Cannot open file:

 WARNING: Saving rule with a reserved system name []

 !WARNING: Cannot open file:

 !WARNING: Outside of Data Section Space:

 !WARNING: Outside of Sequence Section Space:

 ERROR: Overrun

 ERROR: missing argument of element in rule []

 ERROR: missing second argument of element in rule []

 ERROR: Undefined Rule []

 ERROR: Undefined Rule References

 ERROR: Recursion Detected

 ERROR: Actor position in rule []

 ERROR: Errors Detected - Build Aborted

 Error detected: Conversion aborted.

 Error detected: Conversion and file write aborted.

 Error: Cannot create file

 Error: Cannot write to file

 ERROR: Errors Detected - Build Aborted

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
A
pp

en
di

x

43

Panel construction assistance
Although Operators can be created manually, there are three different methods provided to
assist in creating them. They extract information from Python Help responses or from online
function descriptions. However, because of variations in the way description are written it is
not possible to perform one hundred percent correct conversions. In other words, they
should only be looked at as providing a starting point and likely to require some level of
rework.

 Clicking this icon will bring up an assistant in Diagram and Automaton Manager. The first
Python tab will display the Generate from Python Help menu.

Double clicking on lines within the first list box will assemble on the first edit box an
expression pointing to the desired function. When reached the Gen button will become
enabled and can then be clicked.

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
A
pp

en
di

x

44

At that point, moving the cursor to the diagram will cause it to change to represent an
element group. Attaching the cursor symbol to an existing element within the
diagram will reveal the graphical interpretation of the Operator including the
proposed executable program. The image below is the actual result from clicking the Gen in
the illustration above.

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
A
pp

en
di

x

45

The second Python tab brings up an assistant that makes an effort at translating a webpage
to a Panel construction diagram. The top listbox contains the top level address. If
necessary, double click it will fill the bottom listbox with of pages for translating. Double
click an entry in that box will cause the process to take place.

Moving the cursor to the Venue construction diagram, will cause it to change to represent
an element group. Attaching the cursor symbol to an existing element within the diagram
will reveal the graphical interpretation of the executable command. It is a best efforts result
and will likely require some correction.

The Web Page button will cause the default browser to go to the page of the entry selected
in the lower listbox.

The from HTML button will perform a similar operation as above but on the content captured
from the browser.

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
A
pp

en
di

x

46

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
A
pp

en
di

x

47

Copy from website:

class statsmodels.tsa.ar_model.AR(endog, dates=None, freq=None,
missing='none')[source]

Autoregressive AR(p) model

Parameters:

endog : array-like

1-d endogenous response variable. The independent variable.

dates : array-like of datetime, optional

An array-like object of datetime objects. If a pandas object is given for
endog or exog, it is assumed to have a DateIndex.

freq : str, optional

The frequency of the time-series. A Pandas offset or ‘B’, ‘D’, ‘W’, ‘M’,
‘A’, or ‘Q’. This is optional if dates are given.

missing : str

Available options are ‘none’, ‘drop’, and ‘raise’. If ‘none’, no nan checking
is done. If ‘drop’, any observations with nans are dropped. If ‘raise’, an
error is raised. Default is ‘none.’

While in the diagram, click the

http://statsmodels.sourceforge.net/devel/_modules/statsmodels/tsa/ar_model.html#AR�

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
A
pp

en
di

x

48

Paste HTML:
<dt id="statsmodels.tsa.ar_model.AR">

<em class="property">class <tt
class="descclassname">statsmodels.tsa.ar_model.</tt><tt
class="descname">AR</tt><big>(</big>endog, dates=None,
freq=None, missing='none'<big>)</big><a class="reference internal"
href="http://statsmodels.sourceforge.net/devel/_modules/statsmodels/tsa/ar_model.html
#AR">[source]<a class="headerlink"
href="http://statsmodels.sourceforge.net/devel/generated/statsmodels.tsa.ar_model.AR.
html#statsmodels.tsa.ar_model.AR" title="Permalink to this definition"></dt>

<dd><p>Autoregressive AR(p) model</p>

<table class="docutils field-list" frame="void" rules="none">

<colgroup><col class="field-name">

<col class="field-body">

</colgroup><tbody valign="top">

<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-
body"><p class="first">endog : array-like</p>

<blockquote>

<div><p>1-d endogenous response variable. The independent variable.</p>

</div></blockquote>

<p>dates : array-like of datetime, optional</p>

<blockquote>

<div><p>An array-like object of datetime objects. If a pandas object is given

for endog or exog, it is assumed to have a DateIndex.</p>

</div></blockquote>

<p>freq : str, optional</p>

<blockquote>

<div><p>The frequency of the time-series. A Pandas offset or ‘B’,
‘D’, ‘W’,

‘M’, ‘A’, or ‘Q’. This is optional if dates are
given.</p>

</div></blockquote>

<p>missing : str</p>

<blockquote class="last">

<div><p>Available options are ‘none’, ‘drop’, and
‘raise’. If ‘none’, no nan

checking is done. If ‘drop’, any observations with nans are dropped.

If ‘raise’, an error is raised. Default is ‘none.’</p>

</div></blockquote></td></tr></tbody></table></dd>

Visral 3.0 User Manual

Volume 1

C
ha

pt
er

:
A
pp

en
di

x

49

numpy.fft.fft(a, n=None, axis=-1)[source]¶

Compute the one-dimensional discrete Fourier Transform.

This function computes the one-dimensional n-point discrete Fourier Transform (DFT) with the efficient
Fast Fourier Transform (FFT) algorithm [CT].

Parameters:

a : array_like

Input array, can be complex.

n : int, optional

Length of the transformed axis of the output. If n is smaller than the length of
the input, the input is cropped. If it is larger, the input is padded with zeros. If
n is not given, the length of the input along the axis specified by axis is used.

axis : int, optional

Axis over which to compute the FFT. If not given, the last axis is used.

Returns:

out : complex ndarray

The truncated or zero-padded input, transformed along the axis indicated by
axis, or the last one if axis is not specified.

http://github.com/numpy/numpy/blob/v1.9.1/numpy/fft/fftpack.py#L91�
http://github.com/numpy/numpy/blob/v1.9.1/numpy/fft/fftpack.py#L91�

	Utilities and Tools
	Mimicker
	Dependency Trees
	Maps
	RSA and Symmetric Encryption for Document Passages

	Visral Diagrams
	/Selecting Elements
	Petri Net Diagrams
	Markov Chain Diagrams
	Path Model Diagrams
	Business Model Diagrams
	Production Model Diagrams
	Circuit Analysis
	Stat101
	Syntax/Grammar Parsing
	Beyond
	Other Syntax/Grammar Operators
	Rule Operations
	Test Rule Operations

	Compiling Grammar Automaton
	Understanding the Emulation Trace
	Atomic/Terminal Operations
	Element Superscripts & Subscripts
	/Repeat and Else (aka: Loop and Optional)
	Precedence

	/Generate EBNF Production Rules
	/
	EBNF Conversion Constraints

	Detect Recursion
	Remove Direct Recursion
	Combine Terms
	Automated Indirect Left Recursive Removal

	Markup - XML/HTML/… Creation, Editing, and Inspection

	Automatons
	Appendix
	Accepted EBNF Forms
	ASCII Control Characters
	Errors and Warnings

	Panel construction assistance
	Copy from website:
	Paste HTML:

